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I. REVIEW

Last time we:

(1) Defined covering spaces and the universal covering space of a Riemann surface.

(2) Stated the fact that Deck(X/X) = m(X,x), where p : X — X is the universal
cover.

(3) Defined the monodromy action of 771 (X, x) on the fiber of a covering p : ¥ — X
via path-lifting.

II. COVERING SPACES

Definition 1. Let X be a topological space. A covering space of X is a topological space
E together with a continuous map 7 : E — X called a covering map such that the fol-
lowing property holds. For each P € X there exists a neighborhood V of P such that

V) = | | Ui, where the sets U; are pairwise disjoint and the restriction 7|y, — Vis a

1
homeomorphism. We say that such a neighborhood V is evenly covered by 7.

Definition 2. A deck transformation of a covering 7 : E — X is an automorphism of the
covering, i.e., an automorphism f : E — E such that the following diagram commutes.

ERX‘%E

The set of deck transformations of 7 is a group, denoted Deck(E/ X) or Deck (E 5 X ) .

Theorem 3. Let X be a connected Riemann surface. Then there exists a covering 7t : X = X
with X connected and simply connected. Moreover X is unique up to isomorphism.
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Definition 4. The covering space X in the previous theorem is called the universal covering
space of X.

Theorem 5. Let X be a connected Riemann surface and p : X — X be its universal cover. Then
Deck(X/X) = m1(X, x) for any choice of basepoint x € X.

Lemma 6 (Path-lifting lemma). Let p : E — X be a covering space. Let <y be a path on X and let
x = v(0). Given any preimage e € p~1(x) there exists a unique path 7 on E such that p o § = v

and y(0) = e.
Definition 7. Such a 7 is called a lift of oy based at e.

Lemma 8. The above definition

gives a right w1 (X, x) action on p~*(x).
Proof. Note that, due to our convention that 7y * 7 traverses first 1, then <, then

X-[ri*y2] = (x-[n]) -]

so this is a right action. g

After converting this into a left action, we get a group homomorphism 7 (X, x) —
Sym(p~!(x)). If the fiber p~!(x) is finite, containing d points, then by labeling the points
1,2,...,d,we canidentify Sym(p!(x)) = S;, hence we obtain a homomorphism 771 (X, x) —
S4-

Definition 9. Let X be a connected Riemann surface, x € X and let p : E — X be a
covering space. Let 6 : 71;(X,x) — Sym(p~1(x)) be the group homomorphism defined
above. Then 6 is called the monodromy representation of p and the image of 6 is called its
monodromy group.

The next result allows us to apply our results on covering spaces to morphisms of Rie-
mann surfaces. Basically, once we throw out the ramification points and values of such a
morphism, the resulting map is a covering map, hence all the above results hold for it.

Theorem 10. Let 7w : X — Y be a nonconstant morphism of compact Riemann surfaces, and

let ¥ C Y be its set of ramification values. Let Y* := Y \  and X* := X\ " Y(X). Then the
restriction 7t|x+ : X* — Y™ is an (unramified) covering map.

III. GROUPS ACTING ON RIEMANN SURFACES

Definition 11. Let G be a group.

e Let X be a topological space. A (continuous) action of G on X is a group homomor-
phism G — Homeo(X), the group of self-homeomorphisms X — X.
o Let X be a Riemann surface and G be a group. A (holomorphic) action of G on X is

a group homomorphism G — Aut(X).
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Given a group G acting on a Riemann surface X, we can form the quotient space G\ X
whose points are the G-orbits of X. There is a natural quotient map

m: X — G\X
x — [x]
where [x]| denotes the G-orbit of x. Without further restrictions, G\ X will only be a topo-

logical space, not necessarily a Riemann surface. The following properties of group ac-
tions yield nice properties of the quotient space G\ X and the quotient map 7.

Definition 12. Let G be a group acting (holomorphically) on a Riemann surface X.

(a) The action is faithful (or effective) if the kernel of the homomorphism G — Aut(X)
is trivial.
(b) The action is free if for all points x € X, the stabilizer

Stabg(x) :={¢g€ G:g-x =x}

is trivial.
(c) The action is properly discontinuous or wandering if, for each x € X there exists an
open neighborhood U > x such that the set

{geG:gUNU # @}
is finite. In particular, this means that Stabg (x) is finite for all x € X.
Lemma 13. If G acts on X properly discontinuously, then G\ X is Hausdorff.

Proposition 14. Suppose G is a group acting on X freely and properly discontinuously. Then the
quotient map 7t : X — G\ X is a covering map with deck transformation group G.

We now have the language to define the Galois correspondence given by the universal
covering space.
Theorem 15. Let X be a connected Riemann surface and p : X — X be its universal cover.

(a) The action of Deck(X/X) on X is free and properly discontinuous. Moreover, the action
is transitive on each fiber.
(b) The action induces an isomorphism of Riemann surfaces

Deck(X/X)\X — X
[x] = p(x).

(c) Let q : E — X be a covering. Then there exists a subgroup H < Deck(X/X) such that
E = H\X as Riemann surfaces, and the following diagram commutes

E ~ H\X

q l

X —= Deck(X/X)\X

Remark 16. Parts (b) and (c) of the above theorem should remind you of Galois theory.
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K 1
| |
E=KH H
| |
F Gal(K/F)
X 1
| |
E=H\X H

X Deck(X/X)

Proposition 17. Let X be a Riemann surface and x € X. Then there is a bijective correspondence

{isomorphismclassesof} -~ { conjugacy classes of }

connected coverings subgroups H < 1(X, x)
F:E—X N

Example 18. Consider the universal cover p : R — S!, p : t — ™ and the covering

g:8! = 8!, g:2z— 2% Let H < Deck(RR/S!) be the subgroup of all deck transformations
of the form « : s — s 4 2m for some m € Z. Then

27 =~ H < Deck(R/S') = Z
so [Deck(R/S') : H] = 2,and H\R = 2Z\R 22 S!. (We're identifying every other loop in

the helix, so we get 2 coils of the helix after quotienting.) Moreover, we get a commutative
diagram.

z s! ~. H\R =2Z\R
L |
2 st - Z\R

Theorem 19. Let G be a finite group acting faithfully on a Riemann surface X. Then G\ X can
be given the structure of a Riemann surface, and the quotient map 7t : X — G\ X is holomorphic
of degree #G and ep(7r) = #Stabg (P) forall P € X.

Corollary 20. Let G be a finite group acting faithfully on a compact, connected Rieman surface
X, let Y = G\X and let 7t : X — Y be the quotient map. Suppose that 7t has k ramification

values y1,...,Yyx € Y such that 7t has ramification index r; at each of the #G /r; points above y;.
4



Then

2¢(X) —2 =#G(2g(G\X) —2) + i

=1
£ 1
=#G | 2g(G\X) —2+ ) (1—;) :
i=1 i
Proof. [This follows from the above theorem, and which previous result?] O

Example 21. Let E : y*> = f(x) be an elliptic curve, and ¢ : (x,y) +— (x, —y) be the
hyperelliptic involution. Then (1) < Aut(E) is a subgroup of order 2, so G = Z/2Z
acts on E via t. Let aq, a2, a3 be the roots of f. Then the only points of E fixed by : are
(a1,0), (a2,0), (a3,0) and co. By the above theorem and corollary, then

0=2g(E)—2=2 (2g(G\X) —2+ i(1 - 1/2)) = 4¢(G\X) = ¢(G\X) =0
i=1

so G\X = PP1.

This matches our intution as well: quotienting out by (¢) identifies points with the same
x-coordinate. Thus points in G\ X are determined by their x-coordinate, so the quotient
map 7 : X — G\ X is really just the projection (x,y) — x.

k
1
Lemma 22. Suppose that r1,...,1x € Z>p, and let R = Z <1 - r_) Then
i=1 i
k=1, anyryor
k=2, anyry,ryor
k=3, r =2r=2anyrs or
k=3, {ry,r,r}=123,3},{2,3,4}0r{2,3,5}.
k=3, {ry,r,r}=1{23,6},{2,4,4}, 0r{3,3,3}; or
k=4 {7’1,1’2,1’3,7’4} = {2,2,2,2}.
1
(c) If R > 2, then in fact R > 2+E'
Remark 23. Case (b) is reminiscent of what geometric phenomenon?

(1) R<2 <

(b) R =2 <— {

Theorem 24. Let G be a finite group acting faithfullly on a compact, connected Riemann surface
X of genus § > 2. Then

#G < 84(g—1).
Proof. By the above corollary, we have
29 —2 =#G(2g(G\X) =2 +R)

k

1

where R = 2 (1 — r_) Note that the lefthand side is > 2 since g > 2.
i=1 l

Case 1: Suppose that g(G\X) > 1.
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e If R =0, since 2¢ — 2 > 0, then g(G\X) > 2. Then
2¢ —2 = #G(2¢(G\X) —2) > #G -2

so#G < g — 1.
e If R #0,thenr; > 2 forsomei,soR >1/2. Then2¢(G\X) —2+R >1/2,s0

2¢ —2 = #G(2g(G\X) —2+R) > 4G - (1/2)

so #G < 4(g—1).
Case 2: Now suppose that g(G\X) = 0. Then

2¢ —2 =#G(—2+R)

1
so we must have R > 2. By part (c) of the above lemma, then R > 2 + 1 5°

2¢ —2 =#G(—2+R) Z#G-%

and thus #G < 84(¢ — 1). O

Remark 25. In fact, Aut(X) is a finite group for all Riemann surfaces of genus g > 2. (We
may prove this later.) This fact, combined with the above theorem, is known as Hurwitz’s
automorphisms theorem, which states that # Aut(X) < 84(g —1).

IV. MORE MONODROMY

Lemma 26. Let X, Y be topological spaces, let p : X — Y be a covering map of finite degree, and
let o : 11(Y,y) — Sy be its associated monodromy representation. If X is path-connected, then
the image of p is a transitive subgroup of S.

Proof. Recall that a transitive subgroup of S, is one that acts transitively on {1,2,...,d}.
Fix indices i and j, and let x;, x; be the corresponding points in the fiber p~(y). Since X is
path-connected, then there exists a path ¢ starting x; and ending at x;. Letting v = F o,
then < is a loop in Y based at y. Moreover, by uniqueness the lift of <y starting at x; must
be J, so p([y]) mapsi toj. O

Example 27. Let ©* := © \ 0 be the punctured unit disc, considered as a subset of C. Let
p: D* — D* be the covering map given by w + w* for some d € Z~,. Take zg = 1/2%
as the basepoint of the codomain. Letting ¢ be an primitive d™ root of unity, then p~*(zo)
consists of the points x; := g/2forj=1,...,d.

1 ...
Letting v : [0,1] — @, v(t) = Z—dezmt, then [vy] is a generator for 711 (D%, zp). The

eth/d

loop 7 lifts to the loops 7; : [0,1] — D" given by 7;(t) = 4l % , whose starting

point is ¢//2 and whose ending point is ¢/*!/2. Thus the monodromy representation
p:m (D%, z9) = S; sends [] to the cyclic permutation that takes j to j + 1, i.e.,

P([W])=(612 e d).



By the Local Normal Form theorem, every morphism of Riemann surfaces locally looks
like z — 2%, so our above example is actually quite general.

We now discuss the monodromy of a morphism F : X — Y of degree d of compact,
connected Riemann surfaces. Let X C Y be its set of ramification values and let Y* :=
Y\ X and X* := X\ 7 }(Z). As we saw previously, then the restriction F|x« : X* — Y*
is an (unramified) covering map. The monodromy representation of F is defined to be the
monodromy representation p : 711(Y*,y) — S; of this resriction. Since X is connected,
then img(p) < S; is a transitive subgroup.

Lemma 28. With notation as above, suppose above a ramification value b € Y there are k preim-
ages uy, ..., ux € F~Y(b), with ramification indices e; := e,,(F). Then the permutation o rep-
resenting a small loop around b has cycle structure (mq, ..., my), i.e., it is composed of k disjoint
cycles of lengths my, ..., my.

Proof. Let y € Y be a basepoint. Fix a ramification value b € Y and choose a small open
neighborhood W of b that is isomorphic to the open disc ©. Let uy, ..., u; be the points
in the fiber F~1(b); since b is a ramification value, then at least one of the u; must be a
ramification point.

Choose W small enough such that F~1(W \ {b}) decomposes as a disjoint union of
open punctured neighborhoods Uy, ..., Uy of uy, .. ., uy, respectively. Letting e; = e, (F),
then by the Local Normal Form Theorem, there are coordinates z; on U; and z on W such

m
i -

Then F sends U; \ {u;} to W\ {b} via the m}h power map. Choose a path a from the
basepoint y to a point yo € W \ {b}, and let  be a loop in W \ {b} based at y, that winds
once around the ramification value b. Then the path ¢ := a ™1 % 8 * a is a loop in Y based
at y, which we will call a small loop on Y around b. Since F is an unramified covering away
from ¥, then the path « simply gives a bijection between the fibers F~1(y) and F~*(yo).
Thus the permutation ¢ of the fiber F~1(y) is determined up to this identification by the
loop B around b.

Above the punctured neighborhood W\ {b} we have k punctured discs U; \ {u;}, each

mapping to W \ {b} via the m;h power map. By the example above, the monodromy for

that F locally has the form z; — z

each covering F |uj\ {u;} + Uj \ {u;} — W\ {b} is a cyclic permutation of the m; preimages
of yo which lie in U;. Thus the loop p based at y and hence the loop 7y based at y induce

cyclic permutations of the points above y, and the cycle corresponding to u; has length
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