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I. REVIEW

Last time we:
(1) Defined covering spaces and the universal covering space of a Riemann surface.
(2) Stated the fact that Deck(X̃/X) ∼= π1(X, x), where p : X̃ → X is the universal

cover.
(3) Defined the monodromy action of π1(X, x) on the fiber of a covering p : Y → X

via path-lifting.

II. COVERING SPACES

Definition 1. Let X be a topological space. A covering space of X is a topological space
E together with a continuous map π : E → X called a covering map such that the fol-
lowing property holds. For each P ∈ X there exists a neighborhood V of P such that
π−1(V) =

⊔
i

Ui, where the sets Ui are pairwise disjoint and the restriction π|Ui → V is a

homeomorphism. We say that such a neighborhood V is evenly covered by π.

Definition 2. A deck transformation of a covering π : E → X is an automorphism of the
covering, i.e., an automorphism f : E→ E such that the following diagram commutes.

E E

X

f

π π

The set of deck transformations of π is a group, denoted Deck(E/X) or Deck
(

E π→ X
)

.

Theorem 3. Let X be a connected Riemann surface. Then there exists a covering π : X̃ → X
with X̃ connected and simply connected. Moreover X̃ is unique up to isomorphism.
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Definition 4. The covering space X̃ in the previous theorem is called the universal covering
space of X.

Theorem 5. Let X be a connected Riemann surface and p : X̃ → X be its universal cover. Then
Deck(X̃/X) ∼= π1(X, x) for any choice of basepoint x ∈ X.

Lemma 6 (Path-lifting lemma). Let p : E→ X be a covering space. Let γ be a path on X and let
x = γ(0). Given any preimage e ∈ p−1(x) there exists a unique path γ̃ on E such that p ◦ γ̃ = γ
and γ̃(0) = e.

Definition 7. Such a γ̃ is called a lift of γ based at e.

Lemma 8. The above definition

p−1(x)× π1(X, x)→ p−1(x)
(x̃, [γ]) 7→ x̃ · [γ] = γ̃(1)

gives a right π1(X, x) action on p−1(x).

Proof. Note that, due to our convention that γ1 ∗ γ2 traverses first γ1, then γ2, then

x̃ · [γ1 ∗ γ2] = (x̃ · [γ1]) · [γ2]

so this is a right action. �

After converting this into a left action, we get a group homomorphism π1(X, x) →
Sym(p−1(x)). If the fiber p−1(x) is finite, containing d points, then by labeling the points
1, 2, . . . , d, we can identify Sym(p−1(x)) ∼= Sd, hence we obtain a homomorphism π1(X, x)→
Sd.

Definition 9. Let X be a connected Riemann surface, x ∈ X and let p : E → X be a
covering space. Let θ : π1(X, x) → Sym(p−1(x)) be the group homomorphism defined
above. Then θ is called the monodromy representation of p and the image of θ is called its
monodromy group.

The next result allows us to apply our results on covering spaces to morphisms of Rie-
mann surfaces. Basically, once we throw out the ramification points and values of such a
morphism, the resulting map is a covering map, hence all the above results hold for it.

Theorem 10. Let π : X → Y be a nonconstant morphism of compact Riemann surfaces, and
let Σ ⊆ Y be its set of ramification values. Let Y∗ := Y \ Σ and X∗ := X \ π−1(Σ). Then the
restriction π|X∗ : X∗ → Y∗ is an (unramified) covering map.

III. GROUPS ACTING ON RIEMANN SURFACES

Definition 11. Let G be a group.
• Let X be a topological space. A (continuous) action of G on X is a group homomor-

phism G → Homeo(X), the group of self-homeomorphisms X → X.
• Let X be a Riemann surface and G be a group. A (holomorphic) action of G on X is

a group homomorphism G → Aut(X).
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Given a group G acting on a Riemann surface X, we can form the quotient space G\X
whose points are the G-orbits of X. There is a natural quotient map

π : X → G\X
x 7→ [x]

where [x] denotes the G-orbit of x. Without further restrictions, G\X will only be a topo-
logical space, not necessarily a Riemann surface. The following properties of group ac-
tions yield nice properties of the quotient space G\X and the quotient map π.

Definition 12. Let G be a group acting (holomorphically) on a Riemann surface X.
(a) The action is faithful (or effective) if the kernel of the homomorphism G → Aut(X)

is trivial.
(b) The action is free if for all points x ∈ X, the stabilizer

StabG(x) := {g ∈ G : g · x = x}
is trivial.

(c) The action is properly discontinuous or wandering if, for each x ∈ X there exists an
open neighborhood U 3 x such that the set

{g ∈ G : gU ∩U 6= ∅}
is finite. In particular, this means that StabG(x) is finite for all x ∈ X.

Lemma 13. If G acts on X properly discontinuously, then G\X is Hausdorff.

Proposition 14. Suppose G is a group acting on X freely and properly discontinuously. Then the
quotient map π : X → G\X is a covering map with deck transformation group G.

We now have the language to define the Galois correspondence given by the universal
covering space.

Theorem 15. Let X be a connected Riemann surface and p : X̃ → X be its universal cover.

(a) The action of Deck(X̃/X) on X̃ is free and properly discontinuous. Moreover, the action
is transitive on each fiber.

(b) The action induces an isomorphism of Riemann surfaces

Deck(X̃/X)\X̃ → X
[x̃] 7→ p(x̃) .

(c) Let q : E → X be a covering. Then there exists a subgroup H ≤ Deck(X̃/X) such that
E ∼= H\X̃ as Riemann surfaces, and the following diagram commutes

E H\X̃

X Deck(X̃/X)\X̃

∼

q

∼

Remark 16. Parts (b) and (c) of the above theorem should remind you of Galois theory.
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K 1

E = KH H

F Gal(K/F)

X̃ 1

E = H\X̃ H

X Deck(X̃/X)

Proposition 17. Let X be a Riemann surface and x ∈ X. Then there is a bijective correspondence{
isomorphism classes of
connected coverings

F : E→ X

}
∼←→

{
conjugacy classes of

subgroups H ≤ π1(X, x)

}
.

Example 18. Consider the universal cover p : R → S1, p : t 7→ e2πit and the covering
q : S1 → S1, q : z 7→ z2. Let H ≤ Deck(R/S1) be the subgroup of all deck transformations
of the form α : s 7→ s + 2m for some m ∈ Z. Then

2Z ∼= H ≤ Deck(R/S1) ∼= Z

so [Deck(R/S1) : H] = 2, and H\R ∼= 2Z\R ∼= S1. (We’re identifying every other loop in
the helix, so we get 2 coils of the helix after quotienting.) Moreover, we get a commutative
diagram.

z S1 H\R = 2Z\R

z2 S1 Z\R

∼

q

∼

Theorem 19. Let G be a finite group acting faithfully on a Riemann surface X. Then G\X can
be given the structure of a Riemann surface, and the quotient map π : X → G\X is holomorphic
of degree #G and eP(π) = # StabG(P) for all P ∈ X.

Corollary 20. Let G be a finite group acting faithfully on a compact, connected Rieman surface
X, let Y = G\X and let π : X → Y be the quotient map. Suppose that π has k ramification
values y1, . . . , yk ∈ Y such that π has ramification index ri at each of the #G/ri points above yi.
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Then

2g(X)− 2 = #G(2g(G\X)− 2) +
k

∑
i=1

#G
ri

(ri − 1)

= #G

(
2g(G\X)− 2 +

k

∑
i=1

(
1− 1

ri

))
.

Proof. [This follows from the above theorem, and which previous result?] �

Example 21. Let E : y2 = f (x) be an elliptic curve, and ι : (x, y) 7→ (x,−y) be the
hyperelliptic involution. Then 〈ι〉 ≤ Aut(E) is a subgroup of order 2, so G = Z/2Z

acts on E via ι. Let α1, α2, α3 be the roots of f . Then the only points of E fixed by ι are
(α1, 0), (α2, 0), (α3, 0) and ∞. By the above theorem and corollary, then

0 = 2g(E)− 2 = 2

(
2g(G\X)− 2 +

4

∑
i=1

(1− 1/2)

)
= 4g(G\X) =⇒ g(G\X) = 0

so G\X ∼= P1.
This matches our intution as well: quotienting out by 〈ι〉 identifies points with the same

x-coordinate. Thus points in G\X are determined by their x-coordinate, so the quotient
map π : X → G\X is really just the projection (x, y) 7→ x.

Lemma 22. Suppose that r1, . . . , rk ∈ Z≥2, and let R =
k

∑
i=1

(
1− 1

ri

)
. Then

(a) R < 2 ⇐⇒


k = 1, any r1; or
k = 2, any r1, r2; or
k = 3, r1 = 2, r2 = 2, any r3; or
k = 3, {r1, r2, r3} = {2, 3, 3}, {2, 3, 4} or {2, 3, 5} .

(b) R = 2 ⇐⇒
{

k = 3, {r1, r2, r3} = {2, 3, 6}, {2, 4, 4}, or {3, 3, 3}; or
k = 4 {r1, r2, r3, r4} = {2, 2, 2, 2} .

(c) If R > 2, then in fact R ≥ 2 +
1

42
.

Remark 23. Case (b) is reminiscent of what geometric phenomenon?

Theorem 24. Let G be a finite group acting faithfullly on a compact, connected Riemann surface
X of genus g ≥ 2. Then

#G ≤ 84(g− 1) .

Proof. By the above corollary, we have

2g− 2 = #G(2g(G\X)− 2 + R)

where R =
k

∑
i=1

(
1− 1

ri

)
. Note that the lefthand side is ≥ 2 since g ≥ 2.

Case 1: Suppose that g(G\X) ≥ 1.
5



• If R = 0, since 2g− 2 > 0, then g(G\X) ≥ 2. Then

2g− 2 = #G(2g(G\X)− 2) ≥ #G · 2

so #G ≤ g− 1.
• If R 6= 0, then ri ≥ 2 for some i, so R ≥ 1/2. Then 2g(G\X)− 2 + R ≥ 1/2, so

2g− 2 = #G(2g(G\X)− 2 + R) ≥ #G · (1/2)

so #G ≤ 4(g− 1).
Case 2: Now suppose that g(G\X) = 0. Then

2g− 2 = #G(−2 + R)

so we must have R > 2. By part (c) of the above lemma, then R ≥ 2 +
1
42

, so

2g− 2 = #G(−2 + R) ≥ #G · 1
42

and thus #G ≤ 84(g− 1). �

Remark 25. In fact, Aut(X) is a finite group for all Riemann surfaces of genus g ≥ 2. (We
may prove this later.) This fact, combined with the above theorem, is known as Hurwitz’s
automorphisms theorem, which states that # Aut(X) ≤ 84(g− 1).

IV. MORE MONODROMY

Lemma 26. Let X, Y be topological spaces, let p : X → Y be a covering map of finite degree, and
let ρ : π1(Y, y) → Sd be its associated monodromy representation. If X is path-connected, then
the image of ρ is a transitive subgroup of Sd.

Proof. Recall that a transitive subgroup of Sd is one that acts transitively on {1, 2, . . . , d}.
Fix indices i and j, and let xi, xj be the corresponding points in the fiber p−1(y). Since X is
path-connected, then there exists a path δ starting xi and ending at xj. Letting γ = F ◦ δ,
then γ is a loop in Y based at y. Moreover, by uniqueness the lift of γ starting at xi must
be δ, so ρ([γ]) maps i to j. �

Example 27. Let D∗ := D \ 0 be the punctured unit disc, considered as a subset of C. Let
p : D∗ → D∗ be the covering map given by w 7→ wd for some d ∈ Z≥1. Take z0 = 1/2d

as the basepoint of the codomain. Letting ζ be an primitive dth root of unity, then p−1(z0)

consists of the points xj := ζ j/2 for j = 1, . . . , d.

Letting γ : [0, 1] → D∗, γ(t) =
1
2d e2πit, then [γ] is a generator for π1(D

∗, z0). The

loop γ lifts to the loops γ̃j : [0, 1] → D∗ given by γ̃j(t) = ζ j 1
2

e2πit/d, whose starting

point is ζ j/2 and whose ending point is ζ j+1/2. Thus the monodromy representation
ρ : π1(D

∗, z0)→ Sd sends [γ] to the cyclic permutation that takes j to j + 1, i.e.,

ρ([γ]) = (1 2 · · · d) .
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By the Local Normal Form theorem, every morphism of Riemann surfaces locally looks
like z 7→ zd, so our above example is actually quite general.

We now discuss the monodromy of a morphism F : X → Y of degree d of compact,
connected Riemann surfaces. Let Σ ⊆ Y be its set of ramification values and let Y∗ :=
Y \ Σ and X∗ := X \ π−1(Σ). As we saw previously, then the restriction F|X∗ : X∗ → Y∗

is an (unramified) covering map. The monodromy representation of F is defined to be the
monodromy representation ρ : π1(Y∗, y) → Sd of this resriction. Since X is connected,
then img(ρ) ≤ Sd is a transitive subgroup.

Lemma 28. With notation as above, suppose above a ramification value b ∈ Y there are k preim-
ages u1, . . . , uk ∈ F−1(b), with ramification indices ei := eui(F). Then the permutation σ rep-
resenting a small loop around b has cycle structure (m1, . . . , mk), i.e., it is composed of k disjoint
cycles of lengths m1, . . . , mk.

Proof. Let y ∈ Y be a basepoint. Fix a ramification value b ∈ Y and choose a small open
neighborhood W of b that is isomorphic to the open disc D. Let u1, . . . , uk be the points
in the fiber F−1(b); since b is a ramification value, then at least one of the uj must be a
ramification point.

Choose W small enough such that F−1(W \ {b}) decomposes as a disjoint union of
open punctured neighborhoods U1, . . . , Uk of u1, . . . , uk, respectively. Letting ej = euj(F),
then by the Local Normal Form Theorem, there are coordinates zj on Uj and z on W such
that F locally has the form zj 7→ z

mj
j .

Then F sends Uj \ {uj} to W \ {b} via the mth
j power map. Choose a path α from the

basepoint y to a point y0 ∈ W \ {b}, and let β be a loop in W \ {b} based at y0 that winds
once around the ramification value b. Then the path γ := α−1 ∗ β ∗ α is a loop in Y based
at y, which we will call a small loop on Y around b. Since F is an unramified covering away
from Σ, then the path α simply gives a bijection between the fibers F−1(y) and F−1(y0).
Thus the permutation σ of the fiber F−1(y) is determined up to this identification by the
loop β around b.

Above the punctured neighborhood W \ {b}we have k punctured discs Uj \ {uj}, each
mapping to W \ {b} via the mth

j power map. By the example above, the monodromy for
each covering F|Uj\{uj} : Uj \ {uj} →W \ {b} is a cyclic permutation of the mj preimages
of y0 which lie in Uj. Thus the loop β based at y0 and hence the loop γ based at y induce
cyclic permutations of the points above y, and the cycle corresponding to uj has length
mj. �
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